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ABSTRACT 

Volumetric microscopy images need to be subdivided into individual cells to 

analyse different biological processes. One of the most important imaging techniques in 

modern cell biology is three-dimensional electron microscopy. However, the identification 

of intracellular structures is a tedious and time-consuming task that hinders the efficient 

use of a potentially useful technology. Reducing this latency is a crucial next step in state-

of-the-art biomedical imaging. Deep-learning methods for automatic segmentation have 

recently gained popularity due to machine learning’s extensive success in bio-image 

informatics. Convolution neural network-based deep learning techniques have been 

created and demonstrated with impressive results. The application of deep learning 

techniques to processing microscope images, including high-resolution reconstruction, 

object tracking, region segmentation, and picture classification. Furthermore, let us 

examine the shortcomings of the existing deep learning-based systems, particularly the 

difficulties in locating and evaluating training datasets, and offer some recommendations 
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for possible remedies. Separating cell bodies, membranes, and nuclei from microscope 

pictures is necessary for many biological applications. This work offers a general overview 

of these works to highlight the challenges these works pose, outline earlier research 

methodologies and areas of study, and ultimately recommend future research directions. 

Keywords: Deep learning, Convolutional Neural Network, Cell Counting, Cell 

Segmentation, Volumetric Microscopic Images, Cell Tracking. 

 

1. Introduction 

One of the primary areas of study 

in medical imaging is microscopy image 

cell segmentation, which focuses on 

analysing the geometrical shape, size, and 

other morphological characteristics of 

biological cells in addition to other duties, 

including cell identification, segmentation, 

and counting. In recent years, there has 

been a focus on automating the analysis of 

microscope image cells, initially with 

traditional image processing techniques. 

Consequently, the state-of-the-art 

automation method for a number of 

microscopy image cell tasks, such as 

microscopy image cell segmentation [12], 

has been greatly advanced by deep neural 

networks (DNNs), more especially 

encoder-decoder architectures. Previous 

research used DNNs to train a fully 

supervised cell segmentation model. Still, 

much microscope image data had to be 

gathered and labelled at the pixel level to 

make this model work. 

Few-shot microscopy image cell 

segmentation is a technique recently 

demonstrated in a more useful study. It can 

be taught using a support set with several 

annotated microscope training images. 

This configuration involves training a deep 

neural network model with source data 

that includes training pictures from 

different kinds of cell segmentation issues. 

After that, a support set of a small number 

of randomly chosen and annotated 

microscope images is used to fine-tune the 

trained model to the target images with 

cells of interest. Even if random image 

selection is effective, it can still be made 

better because low informativeness in the 

support set could lead to poor fine-tuning 

and low accuracy performance in the 

testing target images that aren’t visible. 

1.1 3D IMAGES 

3D images, or three-dimensional 

images, are visual representations that 

convey depth perception, allowing objects 

or scenes to appear as if they have depth 

and volume. Unlike traditional two-

dimensional (2D) images [11], which are 

flat and lack depth perception, 3D images 

give the illusion of depth, making them 
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appear more lifelike and realistic. There 

are various techniques to create 3D 

images, including stereoscopy, where two 

slightly different images are presented to 

each eye to simulate depth perception, and 

computer-generated imagery (CGI), where 

3D models are created and rendered using 

specialised software. 3D images are 

commonly used in fields such as 

entertainment (movies, video games), 

medical imaging, architecture, virtual 

reality, and more, where depth perception 

adds value to the visualisation of complex 

structures or environments. 

1.2 Volumetric Microscopy Images 

Volumetric or 3D microscopy images 

provide detailed visualisations of 

biological samples or materials in three 

dimensions. Traditional microscopy 

typically produces 2D images, capturing a 

single plane of the sample at a time. 

However, with advancements in 

microscopy techniques, capturing entire 

volumes of samples has become possible, 

allowing for more comprehensive analysis 

and understanding. 

Volumetric microscopy techniques include: 

• Confocal microscopy: This technique uses a focused laser beam to illuminate 

specific planes within a sample. By scanning through different depths and 

collecting fluorescence emitted from the sample, confocal microscopy generates 

high-resolution 3D images. 

 

 

 

 

 

 

 

 

Fig 1: Confocal Microscopy 

• Two-photon microscopy: Two-photon microscopy uses two lower energy photons 

to excite fluorescent molecules within a sample, allowing for deeper imaging 

without damaging the specimen. It is particularly useful for imaging thick samples, 

such as brain tissue. 
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Fig 2 Two-photon microscopy 

• Light-sheet microscopy: Light-sheet microscopy [14] illuminates a thin plane of a 

sample with a sheet of laser light while capturing images from a perpendicular 

angle. This technique reduces phototoxicity and allows for rapid imaging of large 

samples, making it suitable for live-cell imaging. 

 

Fig 3: Light Sheet microscopy 

• Serial block-face imaging: In this technique, a sample is imaged layer by layer as 

it is gradually shaved or sectioned. Each slice is imaged, and the process is 

repeated until the entire volume is captured. This method is often used for imaging 

tissues at nanometer-scale resolution in electron microscopy. 

 

 

 

 

 

 

 

Fig 4: Serial block-face imaging 
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1.3 Microscopy Image Cell 

Segmentation 

Microscopy image cell 

segmentation identifies and delineates 

individual cells within a microscopy 

image. It is a crucial step in quantitative 

analysis and allows researchers to study 

various aspects of cellular morphology, 

behaviour, and interactions. 

Here’s how the process generally works: 

• Preprocessing: The microscopy image 

may undergo preprocessing steps to 

enhance contrast, reduce noise, and 

improve the quality of the image. This 

could involve techniques like filtering, 

background subtraction, or intensity 

normalisation. 

• Feature extraction: Features such as 

cell edges, textures, or intensity 

variations are extracted from the 

preprocessed image. These features 

help distinguish cells from the 

background and each other. 

• Segmentation: Segmentation 

algorithms are applied to partition the 

image into regions corresponding to 

individual cells. Various segmentation 

methods include thresholding, region-

growing, watershed transformation, 

active contours (snakes), and machine 

learning-based approaches like 

convolutional neural networks (CNNs). 

• Thresholding: Pixels with intensities 

above or below a certain threshold are 

classified as belonging to cells or 

background, respectively. 

• Region-growing: Starting from seed 

points, neighbouring pixels with similar 

properties (e.g., intensity) are iteratively 

added to the segmented region until a 

stopping criterion is met. 

• Watershed transformation: This 

method treats intensity gradients in the 

image as a topographic surface and 

simulates flooding to delineate cell 

boundaries. 

• Machine learning-based approaches: 

Deep learning techniques, particularly 

CNNs, have shown promising results in 

segmenting microscopy images by 

learning hierarchical features directly 

from the data. 

• Post-processing: The segmented 

regions may undergo post-processing 

steps to refine the segmentation and 

remove any artefacts or errors. This 

could involve morphological operations 

(e.g., erosion, dilation), connected 

component analysis, or manual 

correction. 

• Quantitative analysis: Once the cells 

are segmented, various quantitative 

measurements can be extracted, such as 

cell count, size, shape, intensity, 

texture, and spatial distribution. These 

measurements provide insights into 

cellular behaviour, physiology, and 

pathology. 

http://www.jisrs.com/
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Fig 5: Flowchart for Image Cell Segmentation 

 

2. Literature Review 

Some of the research papers reviewed are given below: 

S.no Year 
Name of The 

Paper 
Author 

Proposed 

Work 
Explanation Research Gap 

1 2021 

EM-net: 

Deep 

learning for 

electron 

microscopy 

image 

segmentation 

Afshin 

Khadangi 

et.al.[1] 

EM – 

NET 

EM-net variants 

perform better than 

current deep 

learning methods 

using small- and 

medium-sized 

ground-truth 

datasets. We also 

show that the 

ensemble of top 

EM-net base 

classifiers 

outperforms other 

methods across 

various evaluation 

metrics. 

EM-net 

applications can 

be extended to 

other tasks, 

including 3D 

volume 

segmentation, 

and we are quite 

confident that 

the proposed 

TLU would 

provide good 

results for other 

imaging 

modalities. 
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2 2021 

FusionNet: A 

Deep, Fully 

Residual 

Convolutiona

l Neural 

Network for 

Image 

Segmentation 

in 

Connectomic

s 

Tran 

Minh 

Quan, et. 

al. [2] 

FusionNet 

FusionNet 

combines recent 

advances in 

machine learning, 

such as semantic 

segmentation and 

residual neural 

networks, with 

summation-based 

skip connections. 

This results in a 

much deeper 

network 

architecture and 

improves 

segmentation 

accuracy. 

FusionNet is 

trained as a 

single chained 

network. More 

in-depth 

analyses into 

why chaining 

approaches are 

beneficial to 

improve the 

prediction 

accuracy of such 

deep networks 

will be an 

important goal 

for future work. 

3 2021 

Learning 

cellular 

morphology 

with neural 

networks 

Philipp J. 

Schubert 

et.al. [3] 

They had 

introduce

d 

cellular 

morpholo

gy neural 

networks 

(CMNs) 

It was based on 

multi-view 

projections sampled 

from automatically 

reconstructed 

cellular fragments 

of arbitrary size and 

shape. 

To learn about 

this cellular 

morphology 

with neural 

networks and 

some real-time 

datasets. 

4 2023 

MorphoFeatu

res for 

unsupervised 

exploration 

of cell types, 

tissues, and 

organs in 

volume 

electron micr

oscopy 

Valentyna 

Zinchenk

o et. al. 

[4] 

A novel 

unsupervi

sed 

method 

For learning 

cellular 

morphology 

features directly 

from 3D EM data, a 

neural network 

delivers a 

representation of 

cells by shape and 

ultrastructure. 

Feature Analysis 

of 3D EM will 

be done better. 

http://www.jisrs.com/


 

Steffi J, Merriliance K 

 

Published by GVN College                 79 

5 2023 

Understandin

g important 

features of 

deep learning 

models for 

segmentation 

of high-

resolution 

transmission 

electron 

microscopy 

images 

James P. 

Horwath 

et al. [5] 

A novel 

method 

They proposed 

methods for 

optimising image 

segmentation 

performance using 

convolutional 

neural networks, 

critically examining 

the application of 

complex deep 

learning models in 

favour of 

motivating 

intentional process 

design. 

This method 

will also be 

applied to the 

challenging 

datasets in the 

future. 

6 2022 

Knowing 

What to 

Label for 

Few Shot 

Microscopy 

Image Cell 

Segmentation 

Youssef 

Dawoud 

et. al. [6] 

They 

proposed 

a new 

approach 

to 

optimise 

the image 

selection 

process. 

They proposed 

novel self-

supervised pretext 

tasks to compute 

the scores of 

unlabelled target 

images. Finally, the 

top few images 

with the least 

consistency scores 

are added to the 

support set for 

Oracle (i.e., expert) 

annotation and later 

used to fine-tune 

the model to the 

target images 

This work needs 

to be extended 

by combining 

other selection 

techniques, such 

as diversity-

based selection. 

Also, we plan to 

combine semi-

supervised 

learning with 

support set fine-

tuning. 
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7 2022 

MEDIAR: 

Harmony of 

Data-Centric 

and Model-

Centric for 

Multi-

Modality 

Microscopy 

Gihun 

Lee et. al. 

[7] 

MEDIAR 

MEDIAR is a 

holistic pipeline for 

cell instance 

segmentation under 

multi-modality in 

this challenge. 

MEDIAR 

harmonises data-

centric and model-

centric approaches 

as the learning and 

inference strategies, 

achieving a 0.9067 

F1-score at the 

validation phase 

while satisfying the 

time budget 

The MEDIAR 

framework does 

not use 

unlabeled 

datasets; how to 

properly 

incorporate 

approaches for 

unlabeled 

datasets would 

be a promising 

extension for 

MEDIAR. 

8 2016 

SAU-Net: A 

Unified 

Network for 

Cell 

Counting in 

2D and 3D 

Microscopy 

Images 

Yue Guo 

et. al. [8] 
SAU-Net 

They First 

proposed SAU-Net 

for cell counting by 

extending the 

segmentation 

network U-Net 

with a Self-

Attention module. 

Second, we design 

an extension of 

Batch 

Normalization 

(BN) to facilitate 

the training process 

for small datasets. 

Semi-supervised 

learning utilises 

unlabeled data 

jointly with 

labelled data to 

facilitate 

training. Both 

directions aim to 

take advantage 

of unlabeled 

data or data 

from other 

sources, 

effectively 

minimising the 

need for labels 

and could lead 

to further 

improvement. 
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9 2022 

EfficientCell

Seg: Efficient 

Volumetric 

Cell 

Segmentation 

Using 

Context-

Aware 

Pseudocolori

ng 

Royden 

Wagner et 

al. [9] 

ViTs 

Our model is 

efficient and has an 

asymmetric 

encoder-decoder 

structure with very 

few parameters in 

the decoder. 

Training efficiency 

is further improved 

via transfer 

learning. 

In the future, we 

will have to try 

this using 

challenging 

datasets. 

10 2021 

Cellpose: a 

generalist 

algorithm for 

cellular 

segmentation 

Carsen 

Stringer, 

et. al. [10] 

Cellpose 

It can precisely 

segment cells from 

various image types 

and does not 

require model 

retraining or 

parameter 

adjustments. 

Periodically 

retraining the 

model on the 

community-

contributed data 

will ensure that 

Cellpose 

improves 

constantly. 

 

3. Methodology 

3.1 Cell Counting 

Cell counting in volumetric 

microscopy images quantifies the number 

of cells in a three-dimensional volume 

captured by a microscope. Unlike 

traditional 2D microscopy images, 

volumetric microscopy images provide 

information about cell distribution and 

density in a 3D space, which can be crucial 

for various biological and medical 

applications. 

 

 

 

Here’s how cell counting in volumetric 

microscopy images is typically performed: 

1. Pre-processing: In automatic 

segmentation for cell counting in 

volumetric microscopic images, 

preprocessing is critical in enhancing 

image quality and preparing the data for 

accurate segmentation. Here’s a 

breakdown of the preprocessing steps 

typically involved: 

2. Image Acquisition: Volumetric 

microscopic images are initially 

captured using imaging equipment such 

as confocal microscopes or other 
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similar devices. These images comprise 

a stack of 2D slices [13], representing 

different depths or planes within the 

specimen. 

3. Noise Reduction: Microscopic images 

often contain noise, which can interfere 

with segmentation accuracy. Noise 

reduction techniques such as Gaussian 

smoothing, median filtering, or wavelet 

denoising are applied to reduce noise 

while preserving important image 

features. 

4. Intensity Normalization: Variations in 

illumination across the image stack can 

affect segmentation results. Intensity 

normalisation techniques are used to 

standardise the brightness and contrast 

levels across all slices in the stack, 

ensuring uniform illumination. 

5. Image Registration: Volumetric 

images may sometimes suffer slight 

misalignments or distortions between 

slices due to specimen movement or 

imaging artifacts. Image registration 

methods align the slices properly, 

ensuring spatial consistency throughout 

the stack. 

6. Contrast Enhancement: To improve 

the visibility of cell boundaries and 

other important structures, contrast 

enhancement techniques such as 

histogram equalisation or adaptive 

contrast stretching may be applied. 

These methods help to increase the 

visual clarity of the image stack. 

7. Background Subtraction: In many 

cases, uneven background intensity 

across the image stack may interfere 

with segmentation accuracy. 

Background subtraction methods are 

utilised to remove or reduce the 

influence of background signals, 

focusing segmentation efforts on the 

foreground objects of interest (cells). 

8. Thresholding: Once the preprocessing 

steps have been completed, 

thresholding is applied to segment the 

cells from the background. This 

involves selecting an appropriate 

intensity threshold to distinguish 

between foreground (cells) and 

background regions in each image slice. 

9. Morphological Operations: After 

thresholding, morphological operations 

such as erosion, dilation, and smoothing 

may refine the segmented cell regions, 

remove noise, and fill gaps or holes 

within cell boundaries. 

10. Connected Component Analysis: 

Connected component analysis is then 

applied to identify individual cells 

based on the segmented regions. This 

involves labelling connected sets of 

pixels belonging to the same cell and 

extracting relevant features such as cell 

size, shape, and intensity. 

http://www.jisrs.com/
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11. Segmentation: Cell segmentation 

delineates individual cells in the 

volumetric images from the 

background. This can be achieved using 

various image segmentation techniques, 

including manual delineation, 

thresholding, watershed segmentation, 

region growing, or more advanced deep 

learning-based segmentation methods 

[15]. 

12. Cell Identification: Once the cells 

are segmented, they are typically 

labelled or assigned unique identifiers 

to distinguish them from each other. 

This step is crucial for accurate cell 

counting and analysis. 

13. Cell Counting: After segmentation 

and identification, the number of cells 

in the volumetric image can be 

determined by simply counting the 

labelled cells. This can be done 

manually or automatically using 

computational algorithms. 

14. Validation and Quality Control: 

It’s essential to validate the accuracy of 

the cell counting results, especially 

when using automated methods. This 

can involve comparing the automated 

counts with manual counts performed 

by experts or evaluating the consistency 

of counts across different volume 

regions. 

15. Analysis and Visualization: Once 

the cell counts are obtained, further 

analysis can be performed to study 

various characteristics such as cell 

density, spatial distribution, and 

morphological features. Visualisation 

techniques such as 3D rendering, 

volumetric rendering, and statistical 

plots can aid in interpreting the results. 

 

 

 

 

 

 

 

 

Fig 6: Cell Counting method 
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3.2 Few Shot Segmentation 

Few-shot segmentation in microscopy 

images [20] refers to segmenting objects 

or regions of interest with limited 

annotated data. In traditional segmentation 

tasks, a large amount of labelled data is 

typically required to train accurate 

segmentation models. However, when 

obtaining such annotations [16] is 

expensive or time-consuming, few-shot 

segmentation methods aim to generalise 

well with only a few annotated examples. 

In microscopy images, few-shot 

segmentation techniques are particularly 

valuable due to the often intricate and 

complex structures present, such as cell 

nuclei, organelles, or tissue structures. 

Here’s how few-shot segmentation in 

microscopy images is typically 

approached: 

➢ Data Augmentation: Since the labelled 

data is scarce, data augmentation 

techniques are often employed to 

artificially increase the diversity of the 

training dataset. Augmentation 

techniques such as rotation, scaling, 

flipping, and elastic transformations can 

help improve the model's generalisation 

ability. 

➢ Transfer Learning: Pre-trained 

models can be fine-tuned for few-shot 

segmentation tasks, especially those 

trained on large-scale datasets like 

ImageNet. The model can effectively 

adapt to the target microscopy images 

with limited annotations by leveraging 

features from a diverse dataset. 

➢ Meta-Learning: Meta-learning 

approaches, such as metric-based or 

optimization-based methods, are 

designed to quickly adapt to new tasks 

with limited data. Metric-based meta-

learning is designed to adapt 

segmentation tasks by leveraging a 

metric or distance function to compare 

and learn from labelled examples. 

Here’s how it works: 

1. Task Definition: The segmentation 

task and its requirements are initially 

defined. This includes specifying the 

type of images to be segmented, the 

classes or objects of interest within the 

images, and any specific segmentation 

challenges or constraints. 

2. Dataset Preparation: A dataset 

containing diverse labelled examples is 

prepared. This dataset typically consists 

of images and corresponding ground 

truth segmentation masks, where each 

pixel or region is labelled according to 

its class or category. 

3. Feature Representation: Each image 

and its corresponding segmentation 

mask are converted into a suitable 

feature representation. This step 

involves extracting relevant features 
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from the images, such as pixel 

intensities, texture descriptors, or deep 

learning embeddings, which capture 

important information for segmentation. 

4. Metric Learning: Metric learning is 

employed to learn a distance function or 

similarity measure between pairs of 

feature representations. The goal is to 

optimise this distance function to map 

similar examples closely in the feature 

space while dissimilar examples are 

pushed further apart. 

5. Meta-learning Setup: The dataset is 

partitioned into meta-training and meta-

test sets. The meta-training set is used 

to train the metric-based meta-learning 

model. In contrast, the meta-test set 

evaluates its performance and 

adaptability to new segmentation tasks. 

6. Training: During the meta-training 

phase, the model learns to adapt its 

segmentation strategy based on the 

labelled examples provided in the meta-

training set. This adaptation involves 

adjusting the parameters of the distance 

function or other model components to 

effectively segment images from the 

same distribution as the meta-training 

data. 

7. Adaptation: Once the model is trained, 

it can be deployed to adapt to new 

segmentation tasks. When presented 

with a new image for segmentation, the 

model compares its features to those of 

the labelled examples in the meta-

training set using the learned distance 

function. Based on this comparison, the 

model adjusts its segmentation strategy 

to produce accurate segmentation 

results for the new task. 

8. Evaluation: The performance of the 

adapted segmentation model is 

evaluated on the meta-test set to assess 

its generalisation capabilities and 

effectiveness in handling new 

segmentation tasks. This evaluation 

helps to validate the utility of the 

metric-based meta-learning approach 

for segmentation adaptation. 

➢ Generative Models: Generative 

models, such as generative adversarial 

networks (GANs) or variational 

autoencoders (VAEs), can generate 

synthetic training data that closely 

resemble the target microscopy images. 

Combining synthetic data generation 

with real annotated data allows the 

model to segment objects with fewer 

annotations accurately. 

➢ Active Learning: Active learning 

strategies can be employed to select the 

most informative samples for 

annotation, thereby maximising the 

effectiveness of the limited annotation 

budget. By iteratively selecting samples 

for annotation based on the model’s 
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uncertainty or informativeness, the 

model can perform better with fewer 

annotations. 

Few-shot segmentation in 

microscopy images is an active area of 

research, with ongoing efforts to develop 

more effective algorithms and techniques 

to tackle this challenging task. Researchers 

aim to enable accurate and efficient 

segmentation of microscopy images with 

limited annotated data by leveraging 

advances in deep learning, transfer 

learning, and meta-learning. 

 

Fig 7: Few-Shot Microscopy Image Cell Segmentation 

 

3.3 Deep Learning Techniques 

Deep learning techniques offer powerful solutions for automatic cell segmentation 

in volumetric microscopic images. Here are some commonly used techniques: 

• Convolutional Neural Networks (CNNs): The majority of deep learning-based 

image segmentation tasks rely heavily on CNNs. They learn hierarchical features 

from images and are particularly effective for tasks like cell segmentation. 

Architectures like U-Net, Mask R-CNN, and their variants are commonly used for 

this purpose. 

http://www.jisrs.com/
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Fig 7: Convolutional Neural Networks 

• U-Net: U-Net is a popular architecture for biomedical image segmentation tasks. It 

comprises a symmetric expanding path that allows for exact localisation and a 

contracting path that captures context. It has been widely used for volumetric 

image segmentation tasks due to its effectiveness and efficiency. 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: U-NET: Convolutional Networks 

• 3D Convolutional Neural Networks: Unlike traditional CNNs that process 2D 

images, 3D CNNs operate directly on volumetric data. They can capture spatial 

dependencies in all three dimensions, which is crucial for volumetric image 

segmentation tasks. However, they are more computationally expensive and require 

more memory than 2D CNNs. 
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Fig 9: Basic 3D CNN Architecture 

➢ Attention Mechanisms: Attention 

mechanisms[17] can help the model 

focus on relevant regions of the input 

volume, improving segmentation 

accuracy. They have been integrated 

into various architectures to enhance 

performance, especially when cells 

might be closely packed or irregularly 

shaped. 

➢ Data Augmentation: Augmenting [18] 

The training data with transformations 

such as rotation, scaling, and flipping 

can help improve the robustness of the 

segmentation model and prevent 

overfitting, especially when dealing 

with limited training data. 

➢ Transfer Learning: Pre-trained 

models trained on large datasets like 

ImageNet [19] can be fine-tuned for 

cell segmentation tasks. Transfer 

learning can help speed up training and 

improve performance, especially when 

limited annotated data is available. 

➢ Post-processing Techniques: After 

obtaining initial segmentation masks 

from the model, post-processing 

techniques such as morphological 

operations (e.g., erosion, dilation), 

connected component analysis, and 

conditional random fields can be 

applied to refine the segmentation 

results and remove artifacts. 

➢ Ensemble Methods: Combining 

predictions from multiple segmentation 

models trained with different 

architectures or initialisation parameters 

can yield more accurate and robust 

segmentation results than a single 

model. 

By employing these deep-learning 

techniques, researchers and practitioners 

can develop robust and accurate automatic 

http://www.jisrs.com/
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cell segmentation systems for volumetric 

microscopic images. 

Conclusion 

Volumetric microscopy images 

provide researchers with valuable insights 

into biological specimens' 3D structure, 

organisation, and dynamics, aiding 

developmental biology, neuroscience, and 

cell biology. They enable the visualisation 

of intricate details that may not be 

apparent in 2D images, leading to a deeper 

understanding of biological processes. 

This review provides an overview of these 

works to summarise previous methods and 

research topics, highlight the issues raised 

by these works, and suggest future 

research directions. This paper's 

contributions will help researchers 

understand past developments and propose 

further innovative technologies. 
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