
Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 236

IMPLEMENTATION OF 1024 TAP FILTER BY VERILOG

PROGRAMMING & VERIFICATION BY TEST BENCH

PROGRAMMING

Satyendra Prasad1*, Sh. Nishant Tripathi2, Sh. Ravi Rastogi3

1NIELIT Gorakhpur (India), Dr. APJ Abdul Kalam Technical University, Lucknow

(India), E-mail: itdchief@yahoo.com
2Scientist-D, NIELIT Gorakhpur (India), E-mail: nishant@nielit.gov.in

3Scientist-D, NIELIT Gorakhpur (India), E-mail: ravirastogi@nielit.gov.in

Received: March 19, 2024, Accepted: April 02, 2024, Online Published: June 15, 2024

ABSTRACT

Design of 1024 Tap filter to optimization of any design related to signal

processing. The required part of the Digital Signal Processing system is the Finite Impulse

Response filter design. The performance of the Finite Impulse Response filter mainly

relies on the multiply and Accumulate operation. Finite impulse Response filters are

designed in two different ways. One is the direct form, and the second is the Transpose

form. Multiply and Accumulate design structure contains the three parts multiplier, adder,

and Accumulator of low-level modules. Multiplication product for any given input and

transfers the result to the next level for further computation. The Adder module is applied

for the Ripple Carry adder, and it is a combinational logic circuit. Add an adder element

and accumulate it with the previous outputs to generate the output of the filter for every

clock cycle. Distributed Arithmetic is a bit serial technique that advances based on the

number of address bits and saves them in the database in the form of a lookup table. Both

Distributed Arithmetic and multiply and Accumulate are designs that are programmed in

Verilog and verified by test bench programming. Matrix laboratory programming was

implemented to design and verify the area, power, and timing for the filter and also

reduced the area, power, and timing. The proposed design has given area, power, and

timing advantages of 64.3%, 62.22%, and 61.76%, respectively.

Keywords: Distributed Arithmetic Design (DAD), Lookup Table Analysis

(LUTA), Multiply and Accumulate Operation (MACO) Unit, Finite Impulse

Response (FIR) Filter Design, and Matrix Laboratory Programming (MLP).

http://www.jisrs.com/
mailto:itdchief@yahoo.com
mailto:nishant@nielit.gov.in
mailto:ravirastogi@nielit.gov.in

Satyendra Prasad et.al

Published by GVN College 237

Introduction

I. Design of 1024 TAP-based FIR Filter:

Designing a 1024 TAP FIR filter

for the Multiply and Accumulation

Operation (MACO) unit involves several

steps, including selecting the filter

coefficients, determining the architecture,

and designing the MACO unit for efficient

computation. Filter Coefficients Choose

the filter specifications such as cutoff

frequency pass band ripple; design the

filter using standard FIR design methods

like windowing, Parks-McClellan

algorithm (Remez exchange), or frequency

sampling. Obtain 1024 filter coefficients

for the desired filter response. Architecture

Selection decides on the architecture for

implementing the FIR filter. Options

include Direct Form FIR, Cascade Form

FIR, Linear Phase FIR, etc. Choose an

architecture that suits your requirements in

terms of speed, resource utilization, and

power consumption. MACO Unit Design

to determine the word length and precision

required for MAC operations based on

your application. Implement the multiply

and accumulate operations efficiently.

Choose appropriate hardware components

such as multipliers, adders, and registers.

Design pipelining and parallelism to

optimize throughput and latency. Consider

techniques like distributed arithmetic,

parallel MAC units, or coefficient sharing

to reduce hardware complexity.

Implementation of hardware description

languages (HDL) like Verilog or VHDL to

describe the filter architecture and MACO

unit. Simulate the design using tools like

ModelSim to verify functionality and

performance. Synthesize the design

targeting your FPGA or ASIC platform.

Perform post-synthesis and post-layout

simulations for verification. Optimization

to analyze timing reports and optimize

critical paths to meet timing constraints.

Explore area optimization techniques such

as resource sharing, retiming, and logic

restructuring. Consider power optimization

techniques like clock gating, voltage

scaling, and low-power design

methodologies. Verification of the

implemented FIR filter and MACO unit

against the desired filter response and

performance metrics. Conduct

comprehensive testing using stimulus

vectors, corner cases, and random inputs.

Ensure the design meets all functional and

non-functional requirements. Integration

of the FIR filter and MACO unit into the

larger system or application. Interface with

other components or modules as

necessary. Validate system-level

functionality and performance.

Conventionally, the FIR Filters are

designed in two different ways:

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 238

1. Direct Form: In the direct form FIR

filter architecture, the delay elements

are shared among the multipliers. This

means that each tap of the filter has its

multiplier, but the delayed input

samples are reused across multiple

multipliers. Input Samples (x(n)) Input

samples enter the filter sequentially,

one sample at a time. Delay Units are

the input samples that are delayed

using delay elements. Each tap of the

filter has its delay element. However,

instead of having separate delay

elements for each tap, the same delay

elements are shared among all the

multipliers. Multipliers for Each tap of

the filter has its multiplier. The

delayed input samples (x (n - k)) are

multiplied by the corresponding filter

coefficients (h (k)), where 'k'

represents the tap index. Summation

(Accumulation) for outputs of all the

multipliers are summed together to

produce the filtered output (y (n)).

This summation process typically

occurs in an accumulator or a series of

adders. Operation at each clock cycle

or time step, a new input sample (x

(n)) enters the filter. The input sample

propagates through the delay

elements. Reaching each multiplier

along with (M-1) previously delayed

samples. Each multiplier multiplies its

corresponding delayed input sample

by the respective filter coefficient.

The outputs of all the multipliers are

summed together to produce the

filtered output (y (n)).

2. Transposed Form: Delay Units for

Each tap of the filter has its delay

element (represented by "z^-1" in the

z-domain). These delay elements store

the previous input samples.

Multipliers for filter coefficients (bk)

are stored in memory or registers

accessible to the multipliers. At each

tap, the current input sample (x (n)) is

convolved with the corresponding

filter coefficient (bk). Adders

(Accumulators) to the results of all the

multiplications are added together to

produce the filtered output (y (n)).

Each tap has its accumulator for

summing up the convolved values.

Operation at each clock cycle or time

step, a new input sample (x (n)) enters

the filter. Each tap performs a

multiplication between the current

input sample and its corresponding

coefficient. The results of these

multiplications are then accumulated

across all taps using adders. The final

accumulated value represents the

output of the filter for that particular

input sample. The equation can

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 239

represent the equation of FIR filter

operation:

N-1

Y[n] =∑ bk ⋅ X [n−k] (1)

k=0

 Where:

Y (n) is the output at time index n.

bk is the filter coefficient.

X (n−k) represents the delayed input

samples.

FIR filter with inputs x (n), coefficients bk,

postpone (z-1), and output y (n) is as

depicted in Figure 1.

Figure 1: Architecture of fir Filter Design

[1]

3) Multiplier and Accumulate Design

The MAC structure contains the following

low-level modules, as depicted in Figure 2:

a. Multiplier

b. Adder

c. Accumulator.

Figure 2: Conventional MAC Architecture

[2]

The 2 operands are multiplied, and the

resultant operand is delivered to the output

of the multiplier. The adder adds the two

parameters, i.e., multiplier output and the

feedback parameter from the accumulator.

a) Multiplier Module: The Multiplier

module described here implements a

Vedic multiplier based on the Urdhava

Tiryakbhyam (UT) sutra, which is a

traditional multiplication technique

from ancient Vedic mathematics. This

approach offers advantages such as

reduced computation time, lower

energy consumption, and smaller area

utilization compared to standard

multiplication methods. Vedic

Multiplier Using Urdhava

Tiryakbhyam (UT) Sutra for design

and operation of the Vedic multiplier

module implements the UT sutra for

multiplication. It takes two input

operands and produces the product as

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 240

the output. The UT sutra breaks down

the multiplication process into simpler

steps, reducing the number of

computation steps required. It works

efficiently for all combinations of

multiplication cases, offering fast

computation with fewer delays. Faster

Computation to The UT sutra reduces

the computation time by simplifying

the multiplication process. It enables

faster multiplication of products

compared to traditional methods.

Energy Efficiency By reducing the

number of computation steps, the

Vedic multiplier consumes less energy

during multiplication operations.

Smaller Area Utilization for The

Vedic multiplier design, based on the

UT sutra, optimizes area utilization,

leading to a smaller hardware

footprint. Implementation of The

Vedic multiplier module is

implemented using Verilog or another

hardware description language (HDL).

It utilizes the principles of the UT

sutra to perform multiplication

efficiently. The module takes input

operands, applies the UT sutra

algorithm, and produces the

multiplication product as output.

Conclusion for The Multiplier module

employing a Vedic multiplier based

on the UT sutra offers significant

advantages in terms of computation

speed, energy efficiency, and area

utilization. By leveraging ancient

Vedic mathematical techniques, this

module achieves faster multiplication

products, making it suitable for

various applications where efficient

multiplication is required.

a) Adder module: The Adder module

described here implements a Ripple

Carry Adder (RCA), which is a basic

form of adder commonly used for

adding multi-bit numbers. It utilizes a

series of full adder sub-modules to

perform the addition operation. While

RCA is simple and easy to implement,

other efficient adders are available in

the literature, and their use is

recommended for applications

requiring higher performance. Ripple

Carry Adder (RCA) to Design and

Operation for The RCA is a

combinational logic circuit used for

adding multi-bit numbers. It consists

of multiple full adder sub-modules

connected in series. Each full adder

module adds three input bits (two

operands and a carry-in) to produce a

sum and a carry-out. The carry-out

from each full adder is propagated to

the next stage. Hence the term "ripple

carry.“ The simplicity of The RCA is

straightforward to implement, making

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 241

it suitable for educational purposes

and simple applications. The

flexibility of the number of bits in the

adder can be dynamically changed

based on the application requirements.

It offers flexibility in terms of

scalability and integration into

different designs. Readily Available

for The RCA block is readily

available and can be easily integrated

with other designs. Implementation of

The Adder module implementing

RCA can be developed using Verilog

or another HDL. It consists of

multiple full adder sub-modules

connected in series, forming the ripple

carry structure. The module takes

input operands and produces the sum

output along with any carry-out

generated. Considerations of RCA are

simple; it may not be the most

efficient adder in terms of speed or

area utilization. For applications

requiring higher performance, other

efficient adders such as Carry Look

Ahead Adder (CLA) or Carry Select

Adder (CSA) can be considered.

Conclusion the Adder module

employs a Ripple Carry Adder (RCA),

which offers simplicity and flexibility

in adding multi-bit numbers. While

RCA is easy to implement and

suitable for basic applications, it may

not provide the best performance in

terms of speed and area utilization.

Depending on the application

requirements, other efficient adder

designs should be explored and

considered for optimal performance.

b) Accumulator Module: The

Accumulator module is a crucial

component in many digital signal

processing (DSP) applications,

including FIR filters. It continuously

accumulates the output of the adder

element with the previously

accumulated outputs to generate the

final output of the filter for every

clock cycle.

II. Introduction to Distributed

Arithmetic:

Distributed Arithmetic (DA) is a widely

used technique in Very Large-Scale

Integration (VLSI) design for

implementing multiplication operations

efficiently. In DA, the multiplication

process is distributed across multiple

simpler operations, typically involving

lookup tables (LUTs), which results in

reduced computational complexity and

resource utilization. An introduction to

Distributed Arithmetic. The approach to

DA avoids traditional multiplication

operations by pre-calculating values based

on address bits and storing them in a

lookup table. Lookup Table (LUT) The

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 242

lookup table stores precomputed values

corresponding to all possible combinations

of input coefficients. Computation: Instead

of directly multiplying operands, the

corresponding values from the lookup

table are fetched and added together to

generate the final result. The advantages of

DA-based designs are that they are easier

to implement on hardware platforms like

field-programmable gate arrays (FPGAs)

and require less computational time

compared to traditional multiplier-based

approaches. Limitation is the number of

bits increases; DA designs can consume

excessive area, making them less suitable

for certain applications. Operation for

Precomputation Values are precomputed

based on the coefficients and stored in the

lookup table. Lookup for Input coefficients

is used as an address bit to access the

corresponding values from the lookup

table. Addition The retrieved values are

added together, typically using simple

addition operations, to compute the final

result. Dot Product Calculation is

commonly used to calculate dot products

efficiently. The dot product calculation

involves fetching coefficients from

memory (LUT) and accumulating partial

products over multiple clock cycles.

Clocks and Bit Range for DA-based

designs typically require N clocks, where

N is the range of bits involved in the

computation. The number of clocks

required is independent of the range of the

entered variables. Design Architecture in

Figure 3 illustrates the architecture of an

LUT-based DA design. The design

includes a lookup table for storing

precomputed values and logic for

accessing and adding these values.

Conclusion for Distributed Arithmetic

offers an efficient alternative to traditional

multiplication approaches, especially in

VLSI design. By distributing the

multiplication process and leveraging

precomputed values, DA enables faster

and less resource-intensive

implementations of arithmetic operations.

However, designers must consider trade-

offs regarding area utilization and

computational complexity when choosing

between DA-based and multiplier-based

approaches.

Figure 3: Architecture of Look UP

Table based Distributed Arithmetic

Design

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 243

Design Implementation

The design implementation

methodology described in the flowchart

(Figure 4) follows a systematic approach

to ensure the successful development of a

digital system. Detailed Design

Specifications will start by defining

detailed design specifications, including an

algorithm description. Number and

complexity of sub-modules, Hardware and

software requirements, Number of input

and output signals, along with their

descriptions, Control, and interfacing unit

requirements for scalability and expansion.

Verilog Coding to Write Verilog code

based on the detailed design specifications.

Begin coding from low-level components

and gradually integrate them into higher-

level modules. Ensure that the Verilog

code accurately represents the intended

functionality of the design. Verification for

Perform verification at every stage of the

design flow to validate functionality. Use

simulation, formal verification, and

hardware-in-the-loop testing techniques.

Verify individual modules and the

integrated system to catch and rectify

errors early. Performance Evaluation to

Utilize Electronic Design Automation

(EDA) tools for performance analysis.

Generate performance reviews comparing

the proposed design with conventional

approaches. Assess factors such as speed,

area utilization, power consumption, and

resource efficiency. Determine which

design better suits the chosen application

based on performance metrics. To

implement and verify the design of a filter

and to optimize its area, power, and timing

using MATLAB programming, Design

Implementation in MATLAB to Write

MATLAB code to model the filter design

based on the specified algorithm and

requirements. Implement the filter

functionality, including coefficient

calculations, input processing, and output

generation. Verify the correctness of the

design by comparing its output with

expected results or using testbench data.

Performance Evaluation to Utilize

MATLAB tools for performance analysis,

including area, power, and timing

estimation. Built-in functions or external

libraries are used to estimate the area,

power consumption, and timing

characteristics of the filter design.

Optimization to Apply optimization

techniques in MATLAB to reduce area,

power, and timing. Explore algorithmic

optimizations, architectural modifications,

and implementation strategies to achieve

better performance. Iteratively refine the

design and evaluate the impact of

optimization techniques on area, power,

and timing. Comparison and Evaluation to

compare the performance metrics (area,

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 244

power, and timing) of the original and

optimized designs. Assess the

effectiveness of optimization techniques in

reducing area, power, and timing while

maintaining or improving the filter's

functionality. Calculate the percentage

improvement achieved in area, power, and

timing compared to the original design.

Figure 4: Process of Design Flow

carried out for proposed design

Application

I. Design Details of 1024 tap FIR Filter

based on MAC

To design a 1024-tap FIR filter

based on Multiply-Accumulate (MAC)

operations with the given specifications,

we can break down the design into three

low-level modules as described and utilize

their operations to construct the high-level

FIR filter.

High-Level Module: The 1024-Tap FIR

Filter module coordinates the operations of

the three low-level modules and handles

the data flow through the filter.

Low-Level Modules:

Multiplier Module: Performs the

multiplication of the input data with the

corresponding filter coefficient.

Accumulator Module: Accumulates the

products from the multiplier module to

produce the filter output.

Sign Extension Module: Handles sign

extension for inputs and coefficients to

maintain consistency in arithmetic

operations.

Specifications:

Input: X and Y, each 8 bits wide.

Output: 16 bits wide.

Coefficients: 1024 coefficients.

Input Format: Two's complement.

Output Format: Two's complement.

Operation:

Multiplier Module:

Inputs: X (8 bits), Coefficient (16 bits)

Output: Product (16 bits)

Operation: Multiply X by the

corresponding coefficient.

Accumulator Module:

Inputs: Products from Multiplier Module

Output: Accumulated sum (16 bits)

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 245

Operation: Accumulate the products to

generate the filter output.

Sign Extension Module:

Inputs: X, Coefficient

Output: Sign-extended X, Coefficient

Operation: Perform sign extension

on both input and coefficient to ensure

consistency in arithmetic operations.

Design Considerations:

Data Path Width: Ensure all data

paths are appropriately sized to handle the

largest possible values without overflow.

Two's Complement Arithmetic:

Implement arithmetic operations

considering the two's complement format.

SL.

N.

Low-Level

Module Unit

Operation

 Perform

1 Vedic

Multiplier

Perform

Multiplication

Operation

2 Adder Performs addition

16-Ripple Carry

Adder

3 Parallel In

Parallel Out

(PIPO)

Accumulation &

Output for each

clock cycle

Pipelining: Depending on the target

clock frequency and throughput

requirements, pipelining may be necessary

to improve performance.

Resource Utilization: Optimize

resource usage considering the target

FPGA or ASIC technology. By integrating

these low-level modules as per the

specified operations and coordinating their

functions within the high-level FIR filter

module, you can achieve the desired 1024-

tap FIR filter design based on MAC

operations. Further, implementation

specifics such as clocks, reset mechanisms,

and control logic need to be developed to

complete the design.

Figure 5: Architecture of 1024 Tap FIR

Filter by MAC section

The high-level module 1024 -Tap FIR

filter design includes 3 low-level modules,

as shown in Figure 5. Table 1 gives the

details of the operation performed by each

of the modules. Table 1: Details of the

Low-Level Module Design & Operation

Performed.

II. Design Details of 1024 tap FIR

Filter-based DA:

To design a 1024-tap FIR Filter

based on Distributed Arithmetic (DA)

utilizing Lookup Tables (LUTs) for storing

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 246

multiplication results and low-level

modules such as rom_rtl, adder, PIPO, and

PISO, we'll follow the provided

specifications. Here's the breakdown of the

design details:

High-Level Architecture:

Lookup Tables (LUTs): Store

precomputed multiplication results based

on the coefficients.

Low-Level Modules:

rom_rtl: Retrieve data from the

ROM/LUTs.

Adder: Perform addition operations.

PIPO (Parallel-In Parallel-Out): Shift in

parallel and shift out parallel data.

PISO (Parallel-In Serial-Out): Shift in

parallel and shift out serial data.

Control Logic: Coordinate operations of

the low-level modules and manage data

flow.

Operation:

Lookup Tables (LUTs): Precompute and

store multiplication results based on the

coefficients.

rom_rtl: Retrieve data from the

ROM/LUTs.

Multiplier Operation: Utilize retrieved data

from the ROM/LUTs and multiply it with

the input data.

Addition Operation: Accumulate the

results from the multiplier operations using

adders.

Shift Operation: Utilize PIPO and PISO

operations to shift data as required.

Design Considerations:

Lookup Table Design (Table 2): Design

the Lookup Tables according to the

provided specifications.

Low-Level Module Operations (Table 3):

Implement operations described in Table 3

using the respective modules.

Input/output Signals (Table 4): Define

input/output signals considering the

number of bits, directions, and descriptions

as outlined in Table 4.

Resource Utilization: Optimize resource

usage, especially LUTs, for efficient

implementation.

Control Logic: Develop control logic to

manage data flow and coordinate

operations of various modules.

Timing Considerations: Ensure the design

meets timing constraints for reliable

operation. By integrating these

components and following the specified

operations and design considerations, you

can realize the 1024-tap FIR Filter based

on Distributed Arithmetic with Lookup

Tables and associated low-level modules.

Further detailed implementation would

involve specifying exact data widths,

clocking schemes, and control signals to

complete the design.

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 247

SL

No.
Address Data

1 0000 0

2 0001 b3

3 0010 b2

4 0011 b2+b3

5 0100 b1

6 0101 b2+b3

7 0110 b1+b2

8 0111 b1+ b2+b3

9 1000 b0

10 1001 b0+b3

11 1010 b0+b2

12 1011 b0+b2+b3

13 1100 b0+b3

14 1101 b0+b1+b2

15 1110 b0+b1+b2

16 1111 b0+b+b2+b3

Table 2: LOOK UP Table (LUT) Design

S

L

.

N

o

.

SIG

NAL

WID

TH

RAN

GE

DIRE

CTIO

N

INDIC

ATOR

EXPLAI

N

1
A0 -

A3
4-bits Input

The

coefficien

t of the

FIR filter

2
ADD

R
4-bits Input

Input

Signal to

FIR Filter

3 clken 1-bit Input

Clock &

clock

enable for

Synchroni

zation

4 Clk - Input

Clock &

clock

enable for

Synchroni

zation.

5 Q
16-

bits
Output

Output of

1024

Tape FIR

filter by

MAC part

Table 3: Input & Output Signal Explain

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 248

Module

Name

 Operation

Demonstration

Rom_rtl Fetch data from Look Up

Table(LUT)

Adders Adds input DATA, e &

cin

Parallel in

Parallel out

(PIPO)

Sends data bit by bit

Parallel in

Parallel

out(PIPO)

Accumulate & Send filter

output

Table 4: All parameters of the Module

Name & Operation Demonstration

Figure 6: Architecture of Distributed

Arithmetic (DA) based FIR Filter.

Result and Discussions

Verilog programming and test

bench programming for this variable

MAC-based algorithm design. The

markers in the simulation represent as

follows:

Marker- 1: 8-bits Input x.

Marker-2: 8-bit Input y

Marker-3: 16-bit output q.

The simulated values are verified with the

theoretical values. d and e, which can be

16 bits, are the intermediate indicators for

the design.

Figure 7: Functional Verification for

MAC-based design

Verilog programming and test

bench programming for this variable DA-

based algorithmic design. It helps to verify

the functionality of the design before it is

synthesized. The markers in the simulation

represent as follows:

Marker 1: clk

Marker 2: clken

Marker-3: 4-bit ADDR

Marker-4: 4-bit Data

Marker-5: Carry

Marker-6: Cin

Marker-7: Sum

Marker-8: 16-bit output q

Marker-4: Filter co-efficient.

The simulated results are verified by

manual calculation. d and e of 16- -bits are

the intermediate indicators for the design.

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 249

Figure 8: Simulation results for DA-

based FIR Filter

 The synthesis reports were

generated for both designs. The area report

generated by the tool for both the

algorithmic designs in Matrix laboratory

programming is shown in Figure 9.

Clearly, the based approach is more

efficient because it makes use of a lesser

number of cells, which in turn reduces the

area.

Figure 9: Comparison of Synthesized

Area report for both the designs

The proposed method has given the

advantage of Area, Power, and Timing

over the conventional approach. The

results are shown in Figures 10, 11, and

12.

Figure 10: Comparison of Area based

on synthesis report generated

Figure 11: Comparison of the Delay

based on synthesis report generated

Figure 12: Comparison of Power

Consumed based on Synthesis Report

Table 3 indicates the Consolidated

Comparison of Area, Power, and Timing

for the proposed design and conventional

design. i.e., MAC-based FIR Filter and the

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 250

proposed design, i.e., DA based with clock

signal.

 Table 3: Consolidated Comparison

of Area, Power, and

 Timing for the proposed design and

conventional design

Parameter

Method

Are

a

(nm2

)

Powe

r (w)

Timin

g(ps)

GIVEN

PERCENTA

GE

DECREASE

64.3

%

62.22

%

61.76

%

IMPROVE

MENT

DATA

OR

PERCENTA

GE

DECREASE

65% 63% 62%

Conclusion

The wearable device targets the

optimized designs to be embedded into it.

They demand Integrated chips, which are

more efficient in terms of computation

time. Since the real signals are

dynamically captured, monitored, and

analyzed 24X7. The reduction in power

consumption is also preferred for portable

devices that are wearable since they cannot

be charged frequently. If there is an area

reduction, then it acts as a bonus. The

proposed design has given an advantage

for all the three important parameters that

the VLSI industry will be looking for. It

may be used in the IC design of

smartwatches and cellular processors,

wherein speed, energy performance, and

portability are essential. Therefore, a

Distributed Arithmetic FIR Filter with

specific LUT is the solution that can be

easily adopted. Implementation of DA-

based FIRs tends to consume less area,

computation time, and energy, which is

approximately equal to 65%, 63%, and

62%, respectively, when compared to

MAC-based filters. In the future, the

distributed arithmetic methodology may be

applied to other blocks of the DSP

Processor to get full advantage. The only

drawback associated with this technique is

it may consume more area when the

number of bits increases exponentially.

The designer should carefully take a call to

decide upon the design to be incorporated

based on the applications.

Acknowledgment

We want to thank you for

providing the required resources to carry

out the project and for motivating us to

write a paper. Their constant

encouragement and stable support will

always encourage the research community

to think in a different direction to serve

society.

http://www.jisrs.com/

Satyendra Prasad et.al

Published by GVN College 251

References

Ashish B. Kharate and Prof. P.R. Gumble,

“VLSI Design and Implementation

of Low Power MAC for Digital FIR

Filter,” International Journal of

Electronics Communication and

Computer Engineering Volume 4,

Issue (2) REACT-2013, ISSN 2249–

071X. June 2013, PP 604 – 605.

Bharathi, M., Shirur, Y.J., & Lahari, P.L.

(2020). Performance evaluation of

Distributed Arithmetic based MAC

Structures for DSP Applications.

2020 7th International Conference

on Smart Structures and Systems

(ICSSS), 1-5.

Cui Guo-wei, Wang Feng-Ying, “The

Implementation of FIR Low-pass

Filter Based on FPGA and DA”

Fourth International Conference on

Intelligent Control and Information

Processing (ICICI IP), 9 – 11.

Dayanand, V. K R, R. T, Y. J. M. Shirur,

and J. R. Munavalli, “Low Power

High-Speed Vedic Techniques in

Recent VLSI Design – A Survey,”

pieces, vol. 4, no. 6, pp. 147-156,

Oct. 2020.

Gayathri S, Esha S Challa Bhabya, Yasha

Joithi M “Design and

Implementation of Arithmetic based

FIR Filters for DSP

Application”International

Conference on Intelligent and

Innovative Technologies in

Computing,978-1-6654-9260-

7/23/2023IEEE

Haw-Jing Lo, “Distributed Arithmetic” in

Design of a Reusable Distributed

Arithmetic Filter and Its Application

to The Affine Projection Algorithm.”

 Heejong Yoo and David V. Anderson,”

Hardware- Efficient Distributed

Arithmetic Architecture for High-

Order Digital Filters,” IEEE

International Conference on

Acoustics, Speech, and Signal

Processing (ICASSP), APRIL 2005,

PP 125-128.

Juthi Farhana Sayed, Bhuiyan Hasibul

Hasan, Babul Muntasir, Mehedi

Hasan, Farhadur Arifin, “Design and

Evaluation of an FIR Filter Using

Hybrid Adders and Vedic

Multipliers,” 2021 2nd International

Conference on Robotics, Electrical

and Signal Processing Techniques

(ICREST).

Maskell, “Design of efficient multiplier

less FIR filters,” IET Circuits,

Devices & Systems, vol. 1, pp. 175–

180(5), 2007

Satyendra Prasad. “To Develop Nobel

Prize “ATTOSECOND” Theory By

Verilog Programming & Verify by

Test Programming.” International

Journal of Inventive and Scientific Research Studies (JISRS)

 www.jisrs.com Vol: II, Issue: 1 June 2024 ISSN: 2584-0630 (Online)

Published by GVN College 252

Conference on Social Science and

Business December 16-17, 2023,

Center for Academic & Professional

Career Development and Research

(CAPCDR) (ISNI:

0000000505092482), (2023),

Sci50161223.

Satyendra Prasad. “To Develop Nobel

Prize “QUANTUM DOT” Theory

By Verilog Programming & Verify

by Test Programming.” International

Conference on Social Science and

Business December 16-17, 2023,

Center for Academic & Professional

Career Development and Research

(CAPCDR) (ISNI:

0000000505092482), (2023),

Sci50161223.

http://www.jisrs.com/

